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The nonequilibrium Green’s function formalism is today the standard computational method for describing
elastic transport in molecular devices. This can be extended to include inelastic scattering by the so-called
self-consistent Born approximation �SCBA�, where the interaction of the electrons with the vibrations of the
molecule is assumed to be weak and it is treated perturbatively. The validity of such assumption and therefore
of the SCBA is difficult to establish with certainty. In this work we explore the limitations of the SCBA by
using a simple tight-binding model with the electron-phonon coupling strength � chosen as a free parameter.
As model devices we consider Au monatomic chains and a H2 molecule sandwiched between Pt electrodes. In
both cases, our self-consistent calculations demonstrate a breakdown of the SCBA for large � and we identify
a weak and a strong-coupling regime. For weak coupling our SCBA results compare closely with those
obtained with exact scattering theory. However in the strong-coupling regime large deviations are found. In
particular we demonstrate that there is a critical coupling strength, characteristic of the materials system,
beyond which multiple self-consistent solutions can be found depending on the initial conditions in the simu-
lation. These are entirely due to the large contribution of the Hartree self-energy and completely disappear
when this is neglected. We attribute this feature to the breakdown of the perturbative expansion leading to the
SCBA.

DOI: 10.1103/PhysRevB.79.085120 PACS number�s�: 71.38.�k

I. INTRODUCTION

Central to the field of molecular electronics are phenom-
ena involving the interaction between the electron current
and the internal degrees of freedom of the molecule investi-
gated. In scanning tunneling microscopy �STM� �Refs. 1–3�,
the molecular vibrational modes �phonons� have been ex-
ploited to desorb or to move a molecule on a surface, paving
the way for phonon-assisted surface chemistry. At the same
time, STM inelastic tunneling spectroscopy uses the finger-
prints of vibrations in the I-V curve to probe the orientation
and/or to identity molecules on surfaces.4–7 Switching de-
vices exploiting phonons have also been reported.8

Broadly speaking, in molecular devices, phonons are im-
portant for two reasons. First, they play a role in transport9,10

by opening new conductance channels through which the
itinerant electrons can propagate and by suppressing the
transmission of purely elastic channels.11 More dramatically,
for large electron-phonon �e-p� coupling, the charge carriers
become quasiparticles consisting of coupled electrons and
phonons.12 Second, from a technological point of view,
phonons limit the efficiency of molecular devices because of
energy dissipation. This causes heating, power loss, and in-
stability.

Transport experiments at the nanoscale are difficult to in-
terpret since the atomically precise device geometry is rarely
known. Therefore, one usually relies on atomistic simulation
techniques in order to understand the results. For elastic
transport, when electron-phonon interaction is not considered
and the electron-electron interaction is treated at the mean-
field level, methods of note for predicting the current flowing
through devices include the nonequilibrium Green’s function
formalism �NEGF� �Refs. 13–17� and scattering theory
�ST�.12,18–20 Some of these methods have been adapted to
include electron-phonon interaction, notably an extension of

scattering theory �exact scattering theory �EST�� �Refs. 11
and 21–23� and the self-consistent Born approximation
�SCBA� �Refs. 24 and 25� within the NEGF formalism. In
addition, time-dependent methods for describing correlated
electron-ion dynamics have been recently proposed.26

The focus of this paper is the SCBA. This is attractive
from a practical point of view since it has moderate compu-
tational requirements and it has been used extensively for
calculating transport properties of a number of different ma-
terial systems.24,25 However, it is a perturbative approach ap-
propriate only for weak e-p coupling. As the e-p coupling
strength increases, the SCBA will eventually breakdown;
however it is unclear whether such breakdown is either sharp
or smooth with the e-p coupling strength. Our work explores
this question in detail. In particular, we investigate electron
transport as a function of the electron-phonon coupling
across the critical coupling for which the SCBA fails.

Our main result is that there is a critical coupling strength,
characteristic of the device under investigation, beyond
which multiple self-consistent solutions can be found de-
pending on the initial conditions in the simulation. These are
not related to the dependence of different polaronic solutions
to the orbital occupation,27,28 a feature that was recently sug-
gested as possible mechanism of hysteresis in I-V
curves,29–31 but it is simply due to the breakdown of the
SCBA. Interestingly, when one neglects the Hartree part of
the e-p self-energy, the problem remains singled value and
shows little evidence of breakdown.

The paper is organized as follows. We begin by presenting
the NEGF formalism for a two-probe device32,33 and by re-
calling the foundations of the SCBA. We then consider a
one-dimensional �1D� tight-binding model where the e-p in-
teraction in the scattering region is described by the Su-
Schrieffer-Heeger �SSH� �Refs. 34 and 35� Hamiltonian. The
parameters for the model Hamiltonian are chosen for mim-
icking two systems which have been studied experimentally:
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H2 molecules sandwiched between Pt electrodes �H2-Pt�
�Refs. 9 and 36� and Au monatomic chains10 comprising R
atoms �RC’s�. The parameters for H2-Pt are the same as
those used by Jean and Sanvito,11 who previously employed
EST to describe phononic effects. We will then compare the
SCBA results with those obtained by EST over a range of
different e-p couplings in order to understand the limitation
of the two methods.

II. METHODOLOGY

A. Nonequilibrium Green’s function formalism

A two-probe device consists of two crystalline electrodes
attached on either side of a scattering region, which is in
general a collection of atoms breaking the electrodes trans-
lational symmetry. The leads are also charge reservoirs, so
that the device may be viewed as two charge reservoirs
bridged by the central region. Thermodynamically we char-
acterize the left-hand side �L� and right-hand side �R� leads
by defining their chemical potentials �L and �R. If �L=�R,
equilibrium is established and no current flows. When �L
��R the system is dragged out of equilibrium and net charge
will move from the reservoir with the higher chemical po-
tential across the central region to the reservoir of lower
chemical potential in an attempt to re-establish equilibrium.
If a battery is attached to the two reservoirs keeping �L
−�R=eV �V is the bias and e is the electron charge�, the
system cannot return to equilibrium and will eventually
reach a steady state with a constant current flow.

At the Hamiltonian level, the problem can be formulated
by using a basis set comprising a linear combination of
atomic orbitals �LCAOs�. It is convenient to write the Hamil-
tonian of the semi-infinite periodic leads in terms of principal
layers �PLs�.32,37 These are cells that repeat periodically and
constructed in such a way that the interaction between PLs
extend only to nearest neighbors �see Fig. 1�. Thus the N
�N matrices H1 and H0 describe, respectively, the interac-
tions between PLs and within a PL. The scattering region in
general is described by M basis functions. The M �M matrix
HM describes its internal interaction, while the matrices HLM
�N�M� and HRM �M �N� contains the interaction between
the PLs of the leads adjacent to the scattering region and the
scattering region itself. The entire system is thus described
by the infinite tridiagonal Hamiltonian H,

H

=�
. . . . . . . . . . .

. 0 H−1 H0 H1 0 . . . . .

. . 0 H−1 H0 HLM 0 . . . .

. . . 0 HML HM HMR 0 . . .

. . . . 0 HRM H0 H1 0 . .

. . . . . 0 H−1 H0 H1 0 .

. . . . . . . . . . .

� .

Time-reversal symmetry sets H−1=H1
†, HML=HLM

† , and
HMR=HRM

† . The retarded Green’s function GR associated to
the entire system �leads plus scattering region� is defined as38

���I − H�GR��� = I , �1�

where ��=lim�→0+��+i��, � is the energy and I is the
infinite-dimensional identity matrix.

For transport calculations, however, one does not need the
Green’s function of the entire system but only that relative to
the scattering region GM in the presence of the leads. This
can be written as39

GM��� = ���IM − HM − �L��� − �R����−1, �2�

where the presence of the leads has been accounted via the
introduction of the self-energies for the left- and right-hand
side leads �L��� and �R���. IM is the M �M identity matrix.
The self-energies are M �M matrices defined as

�L = HMLgLHLM, �R = HMRgRHRM , �3�

where gL��� and gR��� are the retarded surface Green’s
functions of the leads, namely, the retarded Green’s functions
of the isolated semi-infinite leads evaluated at the PLs adja-
cent to the scattering region. These are calculated by consid-
ering the retarded Green’s function of the corresponding in-
finite system �periodic� and by applying appropriate
boundary conditions.20,40 External bias voltage is introduced
under the assumption that the leads are good metals main-
taining local charge neutrality. The effect of a bias is there-
fore only that of shifting rigidly in energy of the leads elec-
tronic structure, so that

�L/R��,V� = �L/R�� � eV/2,0� . �4�

We now proceed to evaluate the nonequilibrium charge
density in the scattering region and the two-probe current by
using the NEGF scheme.37 The lesser �	� and greater �
�
Green’s functions GM

���� are defined as

GM
���� = GM��������GM

† ��� , �5�

with self-energies

����� = �
�=L,R

��
���� , �6�

��
	��� = inF

��������� , �7�

�
�
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FIG. 1. �Color online� Schematic representation of a system
composed of two semi-infinite leads and a scattering region �rect-
angular dashed box�. The matrices H0 and H1 describe the lead
principal layers, HM describes the scattering region, and HLM and
HRM the interaction between the scattering region and the last prin-
cipal layers of the leads.
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��

��� = i�nF

���� − 1������ . �8�

Here nF
����=nF��−��� is the Fermi function evaluated at

�−�� and temperature T, ��=EF�eV /2 with EF is the
leads Fermi energy, and we have introduced the coupling
matrix for the � lead ��=L /R�,

����,V� = i�����,V� − ��
†��,V�� . �9�

The nonequilibrium charge-density matrix for the scattering
region is


 =
1

2�i
�

−�

�

d��GM
	���� . �10�

If HM has a functional dependence on 
, Eqs. �2� and �10�
can be solved self-consistently. The net current flowing
through the device is then

Junp�V� =
2e

h
�

−�

�

d� Tr��LGM
† �RGM��nF

L − nF
R� , �11�

where the subscript “unp” stands for “unperturbed,” meaning
that no e-p interaction is included. The term T�� ,V�
=Tr��LGM

† �RGM� is the standard Landauer-Büttiker trans-
mission coefficient; although in this case it is explicitly bias
dependent. The conductance G in the linear-response limit is

G =
2e2

h
T�EF,0� , �12�

while more generally at a given bias V, one has

G�V� = 	dJunp

dV
	

V
. �13�

B. Self-consistent Born approximation

We now discuss the main concepts associated with intro-
ducing e-p scattering into the NEGF transport scheme. In
general, inelastic scattering produces loss of phase coher-
ence, similarly to what happens when an electron is absorbed
by a reservoir. In fact one may think of inelastic processes as
resulting from the coupling of the scattering region to a “fic-
titious” charge reservoir41 that does not exchange a net cur-
rent. Thus e-p interaction can be introduced via a self-energy
�ph��� and the retarded Green’s function becomes

GM��� = ���IM − HM − �L��� − �R��� − �ph����−1.

�14�

The exact form for �ph��� is unknown, however, convenient
approximations can be derived from the perturbative expan-
sion over the e-p coupling strength.16,24,25,33,42 In this work,
we consider the SCBA where only the Hartree and Fock
diagrams of the perturbative expansion are retained �see Fig.
2�. This is equivalent to evaluating the first-order diagrams at
the interacting electronic Green’s function. Thus the phonon
self-energy reads as

�ph��� = �F��� + �H, �15�

where the retarded Hartree and Fock contributions to the
self-energies are, respectively,33,44

�H = i�
�

4

��
�

−�

� d��

2�
M� Tr�GM

	����M�� , �16�

�F��� = �
�

1

2
���


��� − ��
	���� −

i

2
H�����


����

− ��
	��������
 . �17�

In Eq. �17� H�� is the Hilbert transform,

Hx�f�x���y� =
1

�
P�

−�

�

dx
f�x�
x − y

, �18�

and P stands for the principal part of the integral. The pho-
non energy and e-p coupling matrix for a particular mode �
are, respectively, �� and M�. Finally the e-p lesser and
greater self-energies are given by

�F���� = �
�

��
���� , �19�

��
���� = M���N� + 1�GM

��� � ��� + N�GM
��� � ����M�,

�20�

which is simply a sum of the self-energies over all the pos-
sible modes �. The occupancy of each phonon mode is N�.

We assume that the phonons are in thermal equilibrium
with a bath, so that for a given temperature N� is simply the
Bose-Einstein distribution N�= �e��/KBT−1�−1, with KB the
Boltzman’s constant. From Eq. �20� we note that the lesser
�greater� self-energy contains contributions from two scatter-
ing processes: electrons with energy �−�� may absorb
�emit� a phonon and/or electrons with energy �+�� may
emit �absorb� a phonon of energy ��. When T�0, electrons
may only emit phonons since N��0, i.e., no phonons are
present in the scattering region provided that the phonon

� � �
� � �
� � �
� � �
� � �

� � �
� � �
� � �
� � �
� � �

� � �
� � �
� � �
� � �
� � �

� � �
� � �
� � �
� � �
� � �

� � �
� � �
� � �
� � �
� � �

+ ++ +

~~ ...+++

~~ +

...

b)

a)
Hartree Fock

� � �
� � �
� � �
� � �
� � �

� �
� �
� �
� �
� �

� �
� �
� �
� �
� �
� �

FIG. 2. Diagrammatic representation of the Hartree-Fock ap-
proximation. �a� The self-consistent proper self-energy �the shaded
circle� is obtained from the first-order Hartree-Fock diagrams evalu-
ated using the interacting Green’s function �double line�. This is
equivalent to resumming all the diagrams �Ref. 43� in �b�.
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lifetime is much smaller than that of the electrons. The total
lesser self-energy of Eq. �6� must be adjusted to include the
phonon self-energy,

����� = �
�=L,R

������ + �ph
� ��� , �21�

and G���� from Eq. �5� are now evaluated using the per-
turbed Green’s function and self-energy from Eqs. �14� and
�21�. The general expression for the interacting �including
e-p coupling� current45 through lead � may be written as the
sum of elastic and inelastic contributions

J��V� = Jel
��V� + Jinel

� �V� ,

where

Jel
� =

2e

h
�

−�

�

d� Tr���GM��GM
† ��nF

� − nF
�� �22�

and

Jinel
� =

2e

h
�

−�

�

d� Tr���
	GM�ph


 GM
† − ��


GM�ph
	 GM

† � .

�23�

III. NUMERICAL METHOD

A. Model Hamiltonian and coupling matrices M�

The systems under investigation are 1D linear atomic
chains described by an s-orbital nearest-neighbor tight-
binding model �see Fig. 3�. The scattering region comprises
of R atoms plus one PL �one atom� from each lead, so that it
contains M =R+2 orbitals. Henceforth we refer to this sys-
tem as RC. Furthermore, we assume that the two leads are
identical. The matrices H0 ,H1 for a 1D tight-binding model
reduce to c-numbers: �L=H0 and �L=H1, where �L ,�L are
the lead onsite energy and hopping parameter, respectively.
The leads’ Hamiltonians thus read as

HL = �L �
i=−�

−1

ci
†ci + �L �

i=−�

−2

�ci
†ci+1 + ci+1

† ci� , �24�

HR = �L �
i=R+2

�

ci
†ci + �L �

i=R+1

�

�ci
†ci+1 + ci+1

† ci� , �25�

where �ci
† ,ci� are the electronic creation and annihilation op-

erators at site i. The interaction Hamiltonian between the
leads and the scattering region are

HLM = �LM�c−1
† c0 + c0

†c−1� , �26�

HRM = �LM�cR+1
† cR+2 + cR+2

† cR+1� , �27�

where for our setup �LM =�L.
For a 1D system, the lead self-energies are analytical

�L�R�
R ��� = ���� − i

����
2

, �28�

where

���� = �0�x , �x� � 1

x − �x2 − 1 �x� 
 1,
� �29�

���� = − 2�0��1 − �x����1 − x2� ,

�0 =
�LM

2

�L
, x =

�� − �L�
2�L

. �30�

Finally, e-p interaction is included into the scattering region
in the form of an SSH Hamiltonian,34,35 comprising three
terms

HM = He + Hep + Hph, �31�

with

He = �
i=0

R+1

�ici
†ci + �

i�j

�ij
0 �ci

†cj + cj
†ci� , �32�

Hph = �
�=1

�max �b�
†b� +

1

2
����, �33�

Hep = �
�=1

�max

�
i�j

Mij
��b�

† + b���ci
†cj + cj

†ci� . �34�

He is the electronic Hamiltonian of the scattering region with
onsite energies �i and the unperturbed hopping parameters �ij

0

�we assume �ij
0 =0 for j� i�1�. Hph is the noninteracting

phonons Hamiltonian written in terms of the phononic cre-
ation and annihilation operators �b�

† ,b�� and the phonon en-
ergies ��=���, with the index � running over all the
modes.46 The final term Hep is the Hamiltonian describing
the e-p interaction within the scattering region. The details of
such interaction are included in the e-p coupling matrices
Mij

� .
In order to calculate the matrices Mij

� and the longitudinal
phonon frequencies, we consider a simple nearest-neighbors
elastic model23,24,47 in which

Mij
� = �ij� e�

i

�mi

−
e�

j

�mj
�� �

2��

. �35�

In Eq. �35� the orthonormal vectors e� represent the ionic
displacement associated to each mode �, mi is the mass of
the atom at site i, and the constants �ij are the e-p coupling
parameters. These latter are defined as the first-order coeffi-

� � �
� � �
� � �

� � �
� � �
� � �

� � �
� � �
� � �

� � �
� � �
� � �

� �
� �
� �

� � �
� � �
� � �

� � �
� � �
� � �

� � �
� � �
� � �

H1 H1H1 H1 H1 H1HLM HRM
HM

H0 H0 H0 H0 H0 H0

Site R R+1 R+2 R+3 R+4−3 −2 −1 0 1 2

FIG. 3. �Color online� Schematic diagram of the simple mon-
atomic systems considered here. It is composed of two semi-infinite
leads and a scattering region. The scattering region is marked with
a dashed rectangle. Inelastic scattering is effective only in the scat-
tering region.
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cient of the expansion of the tight-binding hopping param-
eter �ij about the atomic equilibrium positions,

�ij = �ij
0 + �ij�ui − uj� , �36�

where ui is the displacement vector of the atom at site i.
From Eq. �36� it follows that �ij =−� ji. In the nearest-
neighbor approximation, the interaction is restricted to elec-
trons moving between sites i and i�1. Finally, we note that
the eigenvectors e� are real. This implies that the matrices
Mij

� are real and symmetric with nonzero matrix elements for
i= i�1, so that Mij

� has a tridiagonal form for longitudinal
phonons. We note that although it is possible to calculate the
coupling parameters �ij using first-principles electronic
structure methods, here we set �ij =� and � is taken as a free
parameter.

B. Numerical integration and self consistency

The flowchart in Fig. 4 outlines the numerical procedure
used to calculate the interacting current J��V� and the differ-
ential conductance G�V�. Each simulation can be partitioned
into three steps. The first two consist of two self-consistent
loops which calculate the phonon self-energies �H and �F,
respectively. These are used in the third step to evaluate
J��V� by using the Eqs. �22� and �23�.

Let us now discuss the three steps in some details. We
start by writing �H as an explicit function of the density
matrix 
,

�H�
� = − 4�
�

Tr


M�

��

M�, �37�

where we assume that all the elements of GM
	 are integrable.

�H is thus nothing but a weighted sum of the matrices M�.
This can be written in the form

�H = �
�=1

M

r�R�, �38�

where the ratio matrices R� and their weighting coefficients
r� are given by

R� =
��0�min

�M��max
M�. �39�

r� = −
4�M��max

����0�min
�
i=1

M−1

Ri,i+1
� �
i,i+1 + 
i+1,i� . �40�

For a given mode �, the largest matrix elements of the
matrix M� is denoted as �M��max. ��0�min is the smallest
among the hopping parameters of the unperturbed system
�no e-p coupling�, which, by construction, is equal to �R��max.
The matrices R� are independent of the e-p coupling � and
simply reflect the symmetry of the specific phonon mode
considered. Thus r� measures the maximum fractional modi-
fication of the elements �ij

0 in the electronic Hamiltonian as
the result of e-p coupling.

The first self-consistent loop of Fig. 4 begins by choosing
the initial values for the weighting coefficients �r��init
= �r1

0 ,r2
0 , . . . ,rR

0�, which are used to construct the density ma-
trix at the first iteration 
1. Then both �r�� and 
 are varied
until the convergence condition,

c1
n = �

�
� �r�

n − r�
n−1�

�r�
n−1�

� 	 tH �41�

is met for the chosen tolerance tH. The density matrix 
 is
obtained by integrating G	 as in Eq. �10�. In order to per-
form this integral, we first take �F=0 under the assumption
that this has little effect of the convergence of 
 �first self-
consistent loop�. Following previous works,32,48 we write 

=
eq+
V, where


eq = −
1

�
�

−�

�

d� Im�GM�nF
L , �42�

and


V =
1

2�
�

−�

�

d�GM�RGM
† �nF

R − nF
L� . �43�

At equilibrium ��L=�R=��, one has 
=
eq.
As shown in Fig. 5�b�, the integral of 
V �Eq. �43�� is

along the real axis and it is bound between the chemical
potentials �L and �R. This is carried out over a numerical
grid of sufficient fineness �dE�H. The calculation of 
eq in-
volves an unbound integral. This is performed over a coarse
grid in the complex plane using a contour integral method,49

since GM is analytical50 and smooth in the imaginary energy

n r1
n, r2

n, r......n , rR
n
}{

E
Numerical Parameters

THM
i)(ωΣ

L(R)

ΩλMλ
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0
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><,0
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n
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FIG. 4. Scheme of our numerical procedure for
self-consistency.
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plane. As shown in Fig. 5�a�, a number of numerical param-
eters must be chosen. First the lower limit of integration EB
must lie below the lowest-lying molecular states and below
the lowest electrode bands. Second, the poles of the Fermi
functions �Matsubara frequencies� which lie within the con-
tour must be taken into account. The integration is then per-
formed by using Gaussian quadrature.51

The second self-consistent loop begins by calculating
�GM

0 ,G�,0� using Eq. �14�, where the converged �H from the
first loop is used and �F=0. We then proceed to iterate
��F ,�ph

� � and �GM ,G�� until a second convergence condition
is met

c2
n =

1

Np
Fmax���GM

n ��i� − GM
n−1��i���� 	 tF. �44�

Note that the condition is over the largest of the matrix ele-
ments and runs over the Np

F energy points �i of the entire
grid. Note also that the tolerance used tF is in general differ-
ent to that used for the Hartree term. The Hilbert transform
required for calculating the imaginary part of �F �Eq. �17�� is
done by using a convolution method combined with a fast
Fourier transform algorithm.24 In order to avoid end-point
corrections, we choose a grid of sufficient range while the
grid fineness �dE�F must be sufficiently fine to resolve
phononic features which lie in the meV range.

Table I shows the numerical and system parameters used
in our simulations. The parameters for the H2-Pt junctions
are identical to those used by Jean11 within the EST treat-
ment of phonons. This set produces the same unperturbed
G�0�� .97G0. The spring constants and masses are chosen to
give longitudinal phonon modes of energies 63 �CM mode�
and 432 meV, respectively, while the ratio matrices for these
two modes are

R1 =�
0 3.2 0 0

3.2 0 0 0

0 0 0 − 3.2

0 0 − 3.2 0
� �45�

and

R2 =�
0 1.6 0 0

1.6 0 − 3.2 0

0 − 3.2 0 1.6

0 0 − 1.6 0
� . �46�

The e-p coupling � remains a free parameter.
The parameters for the Au RC’s match closely those used

by Frederiksen of Ref. 24. The atoms in the leads are chosen
as identical to the atoms in the scattering region, thus that a
single onsite energy and hopping parameter characterize the
electronic Hamiltonian. These parameters and the equilib-
rium potential �eq are chosen so that the differential conduc-
tance for the unperturbed system is G0=2e2 /h �perfect trans-
mission�.

IV. RESULTS: H2-Pt JUNCTIONS

A. Self-consistent simulations

The self-consistent G�V� in the range 0–110 meV for �
ranging between 0 and 3.1 eV /Å are presented in Fig. 6. For

TABLE I. Parameters used to simulate the H2-Pt junctions and
Au RC’s. The parameter Kc is to the spring constant between the
atoms in the chain, while Kc−e is to the spring constant between the
molecule and the electrodes. The Fock grid and real Hartree grid are
symmetric about EF.

System parameter H2-Pt Au RC

Symbol Value Value Units

EF 0.00 0.00 eV

�M �molecule� −6.0 0.00 eV

�L �leads� 0.00 0.00 eV

�L �leads� 5 −1.00 eV

�M �molecule� 6.0 −1.00 eV

�LM 3.2 −1.00 eV

T 4.0 4.0 K

m �atomic mass� 1 197 amu

Kc 21.82 2.00 eV /Å2

Kc−e 0.91 1.00 eV /Å2

Numerical parameter Value Value Units

�Vini ,Vfinal� �Bias range� �0,200� �0,31� meV

Number of bias points 250 120

�dE�F �Fock� 0.1 0.1 meV

Np
F �Fock� 12600 12600

rp1, �Hartree� 4000 4000

�dE�H �Hartree� 0.1061 0.0215 meV

cp1 �Hartree� 400 200

cp2 �Hartree� 400 200

EB �Hartree� −28.0 −5.0 eV

Poles �Hartree� 80 80

tF �tolerance� 9�10−8 9�10−8 eV−1

tH �tolerance� 1�10−8 1�10−6

EB EF−V/2 EF FE +V/2−V/2

nF nF(R) (L)

cp1
cp

2

Poles
[ ]ωIm

[ ]ωRe

rp
1

[ ]ωRe

1

a) b)

FIG. 5. �Color online� Schematic representation of the integrals
in Eqs. �42� and �43�, respectively. In �a� the number of grid points
along the circular path �cp1� and the path in the complex plane
parallel to the real axis �cp2� must be chosen, as well as the poles in
the Fermi functions. In �b� the integration of 
V is bound between
EF+eV /2 and EF−eV /2 by the Fermi functions. rp1 is the number
of points of the real axis energy grid.
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this system the characteristic signature of e-p interaction is a
drop in the conductance at a threshhold voltage Vthr. This
signals the onset of inelastic electron processes involving the
emission of phonons with energies ��eVthr. We quantify
this effect by defining the conductance drop �in units of G0�,

�thr = G�0� − G�Vthr� . �47�

Numerical simulations are carried out in two different
ways. First, we follow the exact numerical procedure of Fig.
4 �“HF-SCBA”�, but we run simulations starting with differ-
ent initial conditions, namely, �r��init= +3.125·10−3 and
�r��init=−3.125·10−3. In Fig. 6�a� �thr is plotted versus �
demonstrating good agreement between the HF-SCBA and
EST for low �. However, the two methods disagree for �
beyond �crit�1.8 eV /Å. �thr peaks sharply above �crit, be-
yond which it becomes dependent on the initial condition
�r��init. This last situation is shown in Fig. 6�c� for �
=2.0 eV /Å, where two different G�V� curves are predicted
for different �r��init and a low-bias conductance of 0.0125 G0
is observed in stark disagreement with the unperturbed value
of �0.97G0. Note that for �=�crit the e-p coupling constant
entering the perturbative expansion of the SCBA �M�� is
rather large reaching the value of 240 meV for the first mode.
This suggests that the development of multiple solutions in
this case originates from a breakdown of the SCBA.

Since the Hartree self-consistent loop is performed before
the Fock one, the dependence on the initial conditions sug-
gests that �H may be responsible for the behavior observed
for �
�crit. Stronger evidence to support this hypothesis is
provided in Figs. 6�b� and 6�d�, where the results for our
second set of simulations in which �H is set to zero are
presented �Fock-only SCBA or in short F-SCBA�. Figure
6�b� shows good agreement between the F-SCBA and the
EST to the much higher coupling of ��4.0 eV /Å. More-
over there is no evidence of any �crit. This is confirmed by
the G�V� curve obtained for �=2.0 eV /Å and presented in
Fig. 6�d�.

In order to have a better insight into the relationship be-
tween the EST and the SCBA, we have looked in detail at
the elastic transmission coefficient �the dominant one in this
case� calculated with both EST and the SCBA, as a function
of the el-ph coupling strength �. This is plotted in Fig. 7 for
the EST �panel �a��, the SCBA �panel �b��, and the Fock-only
SCBA �panel �c��. In the case of EST and Fock-only SCBA,
we investigate � both larger and smaller than �crit, while we
consider only �	�crit in the case of the SCBA.

Interestingly, T��� for the EST and the Fock-only SCBA
remain rather similar for � on both sides of �crit, in sharp
contrast to what happens when the Hartree self-energy is
included. This means—at least for our particular model
system—that the scattering properties are well described at
the Fock level, even in the case of strong e-p coupling. How-

1.6 1.7 1.8 1.9 2 2.1 2.2
α [eV/Å]

-0.05

0

0.05

0.1

0.15

0.2

∆ th
r
[G

0]

{rλ}
init

= -0.003125

{rλ}
init

= +0.003125

EST

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
α [eV/Å]

0

0.05

0.1

∆ th
r
[G

0]

EST

SCBA (ΣH
= 0)

0 0.025 0.05 0.075 0.1
V [eV]

0.005

0.01

0.015

0.02

0.025

G
(V

)
[G

0]

{rλ}
init

= -0.003125

{rλ}
init

= +0.003125

0 0.05 0.1
V [eV]

0.945

0.95

0.955

0.96

0.965

0.97

0.975

G
(V

)
[G

0]

EST

SCBA (ΣH
= 0)

a)

c)

b)

d)

α = 2.00 eV/Å α = 2.00 eV/Å

FIG. 6. �Color online� Differential conduc-
tance and conductance drop at threshold for the
H2-Pt junctions—Vthr is taken at 68.5 meV. Re-
sults obtained using the SCBA including both
Hartree and Fock terms �HF-SCBA� are given for
the different initial conditions �panels a and c�. In
panels �b� and �d� we also show results obtained
by setting �H=0. In this second case �thr and
G�V� agree well with the EST �Ref. 11� up to �
�4.0 eV /Å. The HF-SCBA disagrees with the
EST at a considerably lower ��1.8 eV /Å.
Above such a coupling strength G�V� depends on
the initial conditions.
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maximum of T�E� calculated from EST as a function of �.
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ever, it is important to remark that neglecting the Hartree
term means essentially to neglect the polarization response
of the molecule. Since this can be the crucial factor in deter-
mining the scattering potential, both F-SCBA and EST in
general can say little about the actual scattering properties of
the system. Thus EST cannot be used as benchmark for the
validity of the SCBA. As a final note, we observe that the
maximum of T�E� calculated with EST shifts to lower ener-
gies as a function of �. The shift however is in the opposite
direction to what is expected from the polarization of the H2
molecule27 and described in the SCBA by the Hartree self-
energy.

B. Contribution from the individual modes

We now analyze the origin the breakdown of the HF-
SCBA. For V�Vthr the inelastic current Jinel is strongly sup-
pressed by Pauli exclusion principle. At low temperature �T
=4.0 K�, we can approximate the Fermi distributions in Jel
by step functions to obtain

J��V� �
2e

h
�

�L

�R

T���d� .

We can now easily probe the contribution of the Hartree term
to the conductance by considering the test Green’s function,

GM
� ��� = ���IM − HM − �L − �R − r�R��−1. �48�

This is used to evaluate the transmission coefficient at V=0
and it is useful to understand the influence of the individual
modes � over the transmission. In Fig. 8 we show T��� as a
function of r� for the two longitudinal modes available in the
H2-Pt system �see Fig. 9�. In the case of the rigid transla-
tional mode ��=1 and Fig. 8�a�� T��� is reduced in the re-
gion around EF as �r1� increases. However, the general shape
of T��� is little affected. This is somehow expected from the
shape of the matrix R1 �Eq. �45��, which indicates that mode
1 causes simply a change in the hopping parameters �12

0 and
�34

0 connecting the molecule to the leads. Importantly when
�12

0 is increased, �34
0 is reduced by the same amount and

viceversa. Moreover there is a symmetry r1→−r1.
The results for the symmetric mode �=2 are presented in

Fig. 8�b�. This time the peak in transmission is shifted in

energy either to the left or to the right depending on the sign
of r2. When shifted to the left, the peak is broadened while a
shift to the right narrows it. In either case the transmission
around EF is reduced.

From Figs. 6�c�, 8�a�, and 8�b� one can conclude that the
deviation of the zero-bias differential conductance from its
unperturbed �no e-p interaction� value is a measure of the
magnitude of the e-p perturbation. We define this deviation
as

�G = G0 − G�0� � G0 − T�EF� , �49�

where the last equality is valid for T→0. Figures 10�a� and
10�b� show the estimated deviation �in units of G0� versus
the weighting coefficients r�. The maximum deviation �G
=1 occurs when the chain actually breaks as for mode 1 and
r1=1. As expected, the curve in Fig. 10�a� for mode 1 is
symmetric about 0, while Fig. 10�b� for mode 2 is not.

C. Discussion of the self-consistent results

We finally reanalyze our self-consistent results in light of
the discussion in Sec. IV B. Figures 11�a� and 11�b� show the
self-consistently calculated r� as a function of � for V=0,
while Fig. 11�c� shows �G as defined in Eq. �49�. The criti-
cal point �crit�1.8 eV /Å marks a sharp transition in the
behavior of the weighting coefficients. This is evident in the
abrupt change in magnitude and behavior of �G �in Fig.
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FIG. 8. �Color online� Transmission coefficients calculated us-
ing the Green’s function GM

� of Eq. �48� for �a� �=1 and �b� �=2.
The matrices R1 and R2 are fixed and a range of values for r� has
been chosen.
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11�c��. In fact while for �	�crit the HF-SCBA agrees well
with the EST; the two differ sharply as soon as �
�crit.
Going into more detail, we note that r1 is identically zero
��10−14� for �	�crit, while r2 is small and negative. Impor-
tantly both r1 and r2 are independent of �r��init. By contrast,
for �
�crit, r2 remains independent of �r��init but this is not
the case of r1. In fact we obtain a strong dependence over the
initial conditions with positive �negative� r1 for positive
�negative� �r��init. Importantly none of these features is found
in the case when we neglect the Hartree self-energy.

Since �r1� is 2 orders of magnitude larger than �r2�, it will
largely determine �H. As Fig. 11�a� shows, r1 varies roughly
linearly with � above �crit; therefore the self-consistent �G

follows the estimated curve of Fig. 10�a� in this region of �.
The magnitude of r1 for �
�crit suggests that the interaction
with phonons becomes a strong perturbation of the electronic
system. We define the region �	�crit as the weak-coupling
regime and the region �
�crit as the strong-coupling re-
gime.

Figure 11 adequately explains the causes of the massive
reduction of G�V� with respect to its unperturbed value ob-
served in Fig. 6�c� at V=0. Notably, as Fig. 6�a� shows, �thr
calculated with the HF-SCBA starts deviating from the EST
result for ��1.75 eV /Å, i.e., at a value lower that �crit
=1.865�0.005 eV /Å calculated for V=0. This seems to
suggest that the critical value of � for the breakdown of the
HF-SCBA somehow depends on the bias. Moreover, at finite
bias �crit is characterized by a peak in �thr��� for positive
�r�init and by a discontinuity for negative �r�init �see Fig.
6�a��.

In order to explore the onset of the breakdown of the
SCBA at finite bias in Fig. 12�a�, we present G�V� for �
=1.84 eV /Å, i.e., just below the zero-bias critical value. In
addition, in Fig. 12�b� we plot the dominant coefficient r1 for
a small range of � about �crit at three different bias, V=0,
V=0.1, and V=0.2 V. A clear result from Fig. 12�a� is that
the presence of �H introduces a reduction of G�V� with bias
not present at V=0. For �	�crit Fig. 12�b� shows that �r1� is
a function of bias whose value increases as the bias in-
creases. The difference between r1 at V=0 and at finite V
explains the deviation below �crit and also the origin of the
peak above it.

The discontinuity in �thr for �r��init
0 of Fig. 6�a� is ex-
plained by the discontinuities observed in r1 �Fig. 12�b�� and
in the current J��V� �Fig. 12�c��. In fact at V=0, r1 is single
valued as long as �	�crit. For �
�crit instead r1��� has a
parabolic shape symmetric about r1=0: the �r��init	0 solu-
tion traces out the lower arm of the parabola and the �r��init

0 solution follows the upper arm as � increases. For V

0, it is seen that the two solutions for r1 are identical and
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asymptotically approach the lower arm of the V=0 curve
from below for �
�crit. However, as � is further increased,
the �r��init
0 solution jumps discontinuously above zero and
then asymptotically approaches the upper arm again from
below.

The discontinuity in r1�� ,V� is determined by both the
bias and the initial conditions. Generally, it is found that such
discontinuity occurs for lower bias first; r1 jumps discontinu-
ously for V=0.1 V before it does for V=0.2 V. This ex-
plains the behavior of the �r��init= +3.125·10−3 solution for
J��V� in Fig. 12�c� which leads to a peak in its derivative �the
conductance G�V�� and explains the discontinuity of �thr.

We note that after the discontinuity in r1 for V
0, the
two solutions are no longer symmetric about r1=0 and do
not converge to the V=0 solutions of either arm until �
�3.0 eV /Å. This is highlighted in Fig. 12�d� where �r1� for
the two solutions is plotted in a range of � just above �crit at
V=0.2 V. Such differences explain why �thr is not indepen-
dent of the initial conditions beyond the discontinuity and
also the different curves observed for G�V� in Fig. 6�c�.

We make a final comment about the discontinuities seen
in Fig. 12�a�. The value of � at which these occur is depen-
dent on the initial conditions as mentioned already. Thus for
a particular �r��init it may be possible to reach the upper
solution at �crit for all bias, so that r1 has a parabolic shape
for bias while being asymmetric about 0. We have not ob-
served this and regard �crit as uniquely defined for V=0 only.

V. RESULTS: AU CHAINS

By using the procedure outlined in Sec. III and the param-
eters of Table I, the HF-SCBA is used to calculate the trans-

port of the Au RC’s. In general we observe a behavior simi-
lar to that of the H2-Pt system. For 3C, 4C, 5C, and 6C a
weak-coupling regime is identified where the shift �G and
the weighting coefficients are zero. A critical coupling
strength �crit for V=0 was discovered for each of the chains
investigated with values �crit�0.85,0.9,0.82,0.83 eV /Å,
respectively, for 3C, 4C, 5C, and 6C. For weak coupling �G
matches closely the values calculated in previous works.24,44

As an example, in Fig. 13 we present G�V� and �G��� for
4C. It is seen that the modes symmetric with respect to the
center of the scattering region �even numbered� induce drops
in G�V� at threshhold voltages corresponding to the energy
of the modes. In general, only the symmetric modes are ac-
tive in RC’s containing an even number of atoms and con-
versely the rigid and antisymmetric modes are active for an
odd RC.

In order to investigate the features of the breakdown of
the SCBA in Table II we report the energy of the various
phonon modes of the Au chains and the e-p coupling param-
eter �M��max. For this latter, we present the zero-bias value at
�=�crit. In general and for all the chains, no single mode
appears to develop a particularly large e-p coupling. There-
fore the breakdown of the SCBA in this case seems to be
subtly driven also by the symmetry of the e-p coupling ma-
trices. We note that, before the breakdown, symmetric �S�
modes are active in reducing the conductance for even-
numbered chains, while asymmetric �A� and rigid transla-
tional modes �R� are active for the odd ones �see Fig. 14�.
With this in mind we find that in all cases there is always an
active mode with �M��max
25 meV at the breakdown. Note
also that the condition max�M��	�LM is never violated so

TABLE II. Mode energy �� and �M��max �in meV� for the four
Au chains investigated. In the last column we indicate the symme-
try of the specific mode: R rigid translation, S symmetric, and A
antisymmetric.

Chain Mode �� �M��max Type

3 1 3.6 24.5 R

3 2 7.9 22.1 S

3 3 11.6 31.3 A

4 1 3.1 23.5 R

4 2 6.5 22.8 S

4 3 9.8 29.4 A

4 4 12.2 34.1 S

5 1 2.6 18.5 R

5 2 5.5 19.8 S

5 3 8.4 19.3 A

5 4 10.9 25.1 S

5 5 12.5 26.3 A

6 1 2.3 17.0 R

6 2 4.8 19.2 S

6 3 7.3 17.5 A

6 4 9.7 22.3 S

6 5 11.5 24.1 A

6 6 12.6 25.2 S
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FIG. 13. �Color online� G�V� for the 4C illustrating the onset of
inelastic processes at threshhold voltages. These are associated to
the symmetric modes of energy �2=6.5 meV and �4=12.2 meV.
The rigid and antisymmetric modes of energies, respectively, �1

=3.1 meV and �3=9.8 meV have no effect for chains comprising
an even number of atoms. No overall shift in G�V� is observed as �
lies below the critical coupling �crit which is clearly determined
from the inset in panel b.
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that the chain remains strongly coupled to the leads.
The transition from weak to strong coupling can be ap-

preciated for the 4C by looking at the inset of Fig. 13�b�,
where for �
�crit two different initial conditions lead to two
different �G. The 6C shows the same behavior of the 4C,
while the 3C and 5C show a single curve for �G due to the
symmetry of the weighting coefficients in the strong regime.
Beyond �crit, for all the RC’s simulated G�V� is reduced to
zero as � increased and the shift �G rises to G0.

Finally we want to investigate further the existence of
multiple solutions depending on the initial conditions in the
self-consistent loops. As an example of how convergence is
achieved in Fig. 15, we show the coefficient r4 as a function
of the iteration number n for the 4C plotted for a single bias
V=0.02 V and coupling 0.902 eV /Å ��
�crit�. A number
of simulations were run with different initial conditions. The
figure indicates the existence of two stable minima: simula-
tions which start at �r��init
0 �dashed lines� converge to the
same positive final value, while simulations initialized with
�r��init	0 converge to the same r4	0 value. We note that
the minima are not symmetric about r4=0. The solution r�

=0 appears to be a minima in the weak-coupling regime but
becomes unstable and evolves to a local maximum in the
strong-coupling regime.

In Fig. 16 r6 for 6C is plotted versus the number of itera-
tions n for �
�crit. This time we run different simulations in
which the lower bound of the energy integration grid �EB� is
changed. In particular we explore situations where EB is not
below the lower band edge of the leads that for our choice of
parameters lies at −2 eV �see Table I�. The figure indicates

that if EB�−1 eV r6 converges to zero so that the sixth
mode gives no contribution to �H. For −2�EB	−1 r6
is nonzero, however, the converged value differs for EB
=−1.5 eV and for EB=−2.0 eV, i.e., it is sensitive on the
grid lower bound. Finally for EB	−2.0 eV the bands of the
leads are entirely included in the integral and r6 converges to
a value of approximately −0.25 eV which is independent of
our choice of EB. From this simple analysis, it appears that
cutting the integration grid can result in the erroneous sup-
pression of the Hartree self-energy, i.e., in a drastic underes-
timate of its contribution. This produces a fortuitous suppres-
sion of the SCBA breakdown, since the agreement between
SCBA and EST is usually improved when �H is neglected.

Finally we test the robustness of our integration method.
Figure 17 shows the transmission coefficients T��� for a 6C
at a bias of V=1 mV where only the sixth mode is consid-
ered. We run two simulations. In the first case, the HF-SCBA
is used with the numerical parameters taken from Table I and
initial condition �r6�init=−9.75·10−3. In the second case, the
integration method outlined in Sec. III B is replaced by
Simpson’s rule along the real axis. The integration range
used is �−3.093,0.1� eV with a grid fineness �dE�H=2.129
�10−5 eV. The Hartree self-consistent loop is started with
�r6�init=0.0 and finished when c1

n	 tH=10−12 �this tolerance
was also used in the first case�. All other parameters of the
calculations are identical in the two cases. The figure shows
that the two numerical methods produce the same T���, spe-
cifically, in the range of applied bias shown in the inset.

VI. CONCLUSIONS

By using a simple 1D tight-binding model, we have in-
vestigated the breakdown of the SCBA as a function of the
e-p coupling strength �. We have identified two regimes. In
the weak-coupling regime there is a unique solution for both
�H and �F, independently of the initial conditions. In par-
ticular, the Hartree self-energy is small and has little effect
on the final conductance. In this weak-coupling regime, the
characteristic conductance drops at voltages corresponding
to the various phonon energies compared well with those
calculated with the EST method.

As the coupling parameter � is increased beyond some
critical value �crit, a sharp transition to the strong-coupling
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FIG. 14. Vibration modes of Au 4C. Modes 2 and 4 are sym-
metric modes �S� about the center of the scattering region. Mode 1
is the rigid translational mode �R� while mode 3 is antisymmetric
�A�. For all chains considered, the mass of the lead atoms is taken
sufficiently larger than that of the chain atoms so that they do not
vibrate.
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regime occurs. In this limit the self-consistent �H becomes
unstable with respect to the initial conditions and exhibits
multiple values for the same voltage. Such a behavior is not
associated to the dependence of the polar response of the
molecule to the level occupation,27,28 but it simply denotes a
breakdown of the SCBA. Thus, for �
�crit the electron-

phonon interaction cannot be treated perturbatively. Interest-
ingly such a breakdown is suppressed when the Hartree self-
energy is neglected completely from the calculation, as
sometimes done in practice. Our results show that although
neglecting the Hartree self-energy is sometime valid,52 it
cannot be taken as a general prescription in quantitative cal-
culations based on e-p parameters extracted from density-
functional theory. For these, no information is available on
whether or not the obtained e-p coupling strength is either
below or above the critical value for the SCBA to break-
down. Therefore, strictly speaking, one rarely knows whether
the SCBA is applicable.
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